Spontaneous olfactory receptor neuron activity determines follower cell response properties.
نویسندگان
چکیده
Noisy or spontaneous activity is common in neural systems and poses a challenge to detecting and discriminating signals. Here we use the locust to answer fundamental questions about noise in the olfactory system: Where does spontaneous activity originate? How is this activity propagated or reduced throughout multiple stages of neural processing? What mechanisms favor the detection of signals despite the presence of spontaneous activity? We found that spontaneous activity long observed in the secondary projection neurons (PNs) originates almost entirely from the primary olfactory receptor neurons (ORNs) rather than from spontaneous circuit interactions in the antennal lobe, and that spontaneous activity in ORNs tonically depolarizes the resting membrane potentials of their target PNs and local neurons (LNs) and indirectly tonically depolarizes tertiary Kenyon cells (KCs). However, because these neurons have different response thresholds, in the absence of odor stimulation, ORNs and PNs display a high spontaneous firing rate but KCs are nearly silent. Finally, we used a simulation of the olfactory network to show that discrimination of signal and noise in the KCs is best when threshold levels are set so that baseline activity in PNs persists. Our results show how the olfactory system benefits from making a signal detection decision after a point of maximal information convergence, e.g., after KCs pool inputs from many PNs.
منابع مشابه
Spontaneous and Sensory - evoked Activity in Mouse Olfactory Sensory 1 Neurons with Defined Odorant Receptors
24 25 Sensory systems need to tease out stimulation-evoked activity against a noisy background. In the 26 olfactory system, the odor response profile of an olfactory sensory neuron (OSN) is dependent on the 27 type of odorant receptor it expresses. OSNs also exhibit spontaneous activity, which plays a role in 28 establishing proper synaptic connections and may also increase the sensitivity of t...
متن کاملSpontaneous and sensory-evoked activity in mouse olfactory sensory neurons with defined odorant receptors.
Sensory systems need to tease out stimulation-evoked activity against a noisy background. In the olfactory system, the odor response profile of an olfactory sensory neuron (OSN) is dependent on the type of odorant receptor it expresses. OSNs also exhibit spontaneous activity, which plays a role in establishing proper synaptic connections and may also increase the sensitivity of the cells. Howev...
متن کاملOlfactory receptors are sensitive to molecular volume of odorants
To study olfaction, first we should know which physical or chemical properties of odorant molecules determine the response of olfactory receptor neurons, and then we should study the effect of those properties on the combinatorial encoding in olfactory system. In this work we show that the response of an olfactory receptor neuron in Drosophila depends on molecular volume of an odorant; The mole...
متن کاملRequirement for Drosophila SNMP1 for Rapid Activation and Termination of Pheromone-Induced Activity
Pheromones are used for conspecific communication by many animals. In Drosophila, the volatile male-specific pheromone 11-cis vaccenyl acetate (cVA) supplies an important signal for gender recognition. Sensing of cVA by the olfactory system depends on multiple components, including an olfactory receptor (OR67d), the co-receptor ORCO, and an odorant binding protein (LUSH). In addition, a CD36 re...
متن کاملRepair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell
Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 8 شماره
صفحات -
تاریخ انتشار 2012